Методическая разработка урока "три этапа в развитии физики элементарных частиц". Три этапа в развитии физики элементарных частиц — Гипермаркет знаний Элементарные частицы конспект

Молянова Надежда Михайловна ID 011

Тема: Зарождение физики элементарных частиц. Классификация элементарных частиц.

Основное содержание учебного материала:
- Исторические этапы развития элементарных частиц.
- Понятие об элементарных частицах и их классификация, взаимные превращения.
- Типы взаимодействий элементарных частиц.
- Элементарные частицы в нашей жизни.

Тип урока: обобщение и систематизация.

Форма урока: Лекция с элементами беседы и самостоятельной работы учащихся с учебником и таблицами.(Таблицы лежат на столах у учащихся и проецируются на экран в процессе урока)

Цель урока:
- Расширить представление учащихся о строении вещества, дать классификацию элементарных частиц, их общие свойства, ознакомить с основными этапами развития.
- Развивать научное мышление учащихся на основе представлений об элементарных частицах и их взаимодействиях

Ход урока:
1. Организационный момент (1 мин.)
2. Изучение нового материала (30 мин.)
3. Закрепление изученных знаний (6 мин.)
4. Подведение итогов (2 мин.)
5. Д/З (1 мин.)

1. Сегодня на уроке мы будем говорить о первичных, неразложимых далее частицах, из которых состоит вся материя. Вы уже более или менее знакомы с электроном, фотоном, протоном и нейтроном. Но что же такое элементарная частица?

2. Исторические этапы развития элементарных частиц можно представить в виде таблицы.

В начале xx века было установлено, что все атомы построены из нейтронов, протонов и электронов. Были открыты позитроны, нейтрино, фотон (гамма - квант).
Основные характеристики наиболее часто встречающихся элементарных частиц.

Элементарные частицы, в точном смысле этого слова – это первичные неразложимые далее частицы, из которых состоят все вещества.
В настоящее время этот термин применяется для большой группы микрочастиц, которые НЕ являются атомами или ядрами, за исключением протона являющегося и элементарной частицей и ядром легкого атома водорода.
Элементарные частицы характеризуются параметрами: "масса покоя частицы, величина спина, величина электрического заряда, время жизни."
Спин элементарной частицы равен отношению постоянной Планка к 2 п

Частицы, имеющие спин и т.д., называют бозонами ; с полуцелым спином - фермионами , т.е.все элементарные частицы разделяются на частицы и античастицы. Они имеют одинаковые массы, спины, времена жизни и равные по модулю электрические заряды.

Позитрон обнаружен в камере Вильсона в 1928 г. Эта частица – электрон, но с положительным зарядом Позитрон был обнаружен в космических лучах. Позже при взаимодействии гамма- квантов с веществом и в реакции превращения протона в нейтрон.

Процесс взаимодействия элементарной частицы с античастицей, в результате чего они превращаются в другие частицы или кванты электромагнитного поля, называют аннигиляцией (исчезновение). Реакция аннигиляции:

Процесс, обратный аннигиляции, называется рождением пары .

Вопрос: Подумайте, какое строение будет иметь антидейтерий?
Ответ: состоит из электрона и ядра(протон и нейтрон). Атом антидейтерия будет состоять из антиядра (антипротона и антинейтрона) и одного позитрона, движущегося вокруг антиядра.

Элементарные частицы участвуют в четырёх известных фундаментальных видах взаимодействия: сильном, электромагнитном, слабом и гравитационном. (см. таб.3)


Энергии фундаментальных взаимодействий относятся примерно так:

Рассмотрим табл.4
Вопрос: Назовите основные классы элементарных частиц.

Ответ: фотоны, лептоны, мезоны, барионы.

Вопрос: Назовите основные характеристики элементарных частиц.
Ответ: Масса, заряд, спин, время жизни.

Вопрос: Чем отличаются частицы и античастицы?
Ответ: Знаки электрических зарядов у частицы и античастицы противоположны.

Фотоны – частицы, участвующие в электромагнитных и гравитационных взаимодействиях.
Лептоны – частицы, не участвующие в сильных взаимодействиях, но способные к трём остальным.
Адроны – частицы, участвующие во всех видах фундаментальных взаимодействий. В этот класс объединяются барионы и мезоны . Барионы имеют полуцелые спины, а мезоны – целочисленные спины. Принадлежность к барионам отмечается присвоением барионного заряда – числа равного +1 для частицы, и -1 для античастицы. К адронам относятся только часть мезонов (П -мезон). Нуклоны относятся к барионам. Барионы, масса которых больше массы нуклона, называют гиперонами .
Принадлежность к лептонам отмечается присвоением каждой частице лептонного заряда: для частиц +1, для античастиц -1.
Установлено, что адроны состоят из кварков – шести частиц, имеющих дробный элементарный электрический заряд. Кварки не наблюдались в свободном состоянии, только в самом центре нуклона находятся как самостоятельные частицы.
Для того, чтобы проникнуть глубже в микромир, необходимо использовать частицы всё больших энергий.
Оказывается, при огромной энергии, существующей при температуре слабое и электромагнитное взаимодействия объединяются в электрослабое. При объединяются все четыре взаимодействия, при этом становятся возможными превращения частиц физической материи (фермионов) в частицы – переносчики взаимодействия (бозоны).
Почему так необходима информация об элементарных частицах?
Важнейшим для физики элементарных частиц является вывод о связи между массой и энергией. Энергия тела или системы тем равна массе, умноженной на квадрат скорости.
Есть над чем подумать!
Нейтрино – частица, которая появилась в момент рождения Вселенной и носит много информации, поэтому нейтринные телескопы «ловят»частицы и ученные изучают их. Существует прибор позитронный томограф. В кровь живого организма вводят радиоактивный элемент, излучающий позитроны, которые вступают в реакцию с электронами организма, аннигилируют, излучают гамма-лучи, которые фиксируются детектором.
В малых дозах гамма-кванты оказывают на живые организмы определенную пользу. Область применения – медицина, наука, техника.

3. Используя опорные конспекты, учебник, таблицы, дайте ответы на вопросы.

4. Все элементарные частицы превращаются друг в друга, т.е. эти взаимные превращения являются главным фактором их существования. Среди свойств элементарных частиц можно выделить следующие: нестабильность, взаимопревращаемость и взаимодействие, наличие у каждой частицы античастицы, сложная структура, классификация.

Мир состоит из фундаментальных частиц. Любое материальное тело обладает массой. А что такое масса? БАК ускоритель частиц, благодаря которому физики могут проникнуть так глубоко внутрь материи, как никогда раньше.
Создание БАКа знаменует начало будущих перспективных исследований. Исследователи надеются на новые физические явления, такие как неуловимые частицы Хиггса, или те, что образуют тёмную материю, составляющую большую часть вещества во Вселенной. Невозможно точно предсказать результаты предстоящих экспериментов, но они точно окажут большое влияние и не только на физику элементарных частиц! Но создание БАКа не заканчивает страницу в истории физики, а скорее знаменует начало будущих перспективных исследований.

5. Домашнее задание (на доске)
Параграфы 115, 116; опорный конспект
подготовить сообщение о ходе исследовательских работ на БАКе.

Используемая литература:
Физика 11 Г.Я. Мякишев, Б.Б. Буховцев. Дрофа.
Курс физики. 3 том. К.А.Путилов, В.А.Фабрикант.
Атомная и ядерная физика. О.К. Костко.
Поурочные разработки по физике. 11класс. В.А.Волков.
Uroki. Net

Цель: Рассказать учащимся об элементарных частицах, их основных свойствах и классификациях

Ход урока

Новый материал (дается лекционно)

Исследования строения атома и атомного ядра показали, что в состав атома входят электроны, протоны, нейтроны. Было принято называть эти частицы элементарными. Фотон(), позитрон (е +)и нейтрино (v), имеющие самое непосредственное отношение к атому и ядру, также стали называть элементарными частицами.

По первоначальному замыслу Элементарные частицы являются наипростейшими частицами, из которых построено вещество (атомы) существующего мира.

Элементарные частицы первоначально представлялось как нечто вечное, неизменное, нерушимое, и образ элементарной частицы связывался с образом песчинки или бесструктурного маленького шарика.

В наши дни не существует четкого критерия элементарности. Понятие "элементарная частица" в наши дни является весьма сложным.

Кратко перечислим известные элементарные частицы в порядке их исторического открытия.

Методические замечания: Учащимся в момент дальнейшего объяснения предлагается заполнять следующую таблицу (Приложение 1)

К какому виду относится Название частицы Обозначение Год открытия Заряд q Масса частицы

Электрон был открыт Дж.Дж.Томсаном в 1897г..Через массу электрона обычно выражаются массы других элементарных частиц.

В 1900г. М.Планком и особенно, в 19005г. А.Эйнштейном было показано, что свет состоит из отдельных порций - фотонов. Фотон не обладает зарядом, и его масса покоя =0.Фотон может существовать только в процессе движения со скоростью света.

Опыты Резерфорда по рассеянию -частиц в 1911г. Привели к открытию протона. Масса протона=1836m е

Большинство физиков были уверены в том, что им удалось наконец-то все многообразие химических элементов и веществ природы свести к двум простейшим сущностям: к электронам и протонам. Картина, нарисованная физиками тех лет по вопросам строения вещества, вселяло чувство научной красоты и изящества. В период с 1911г. По 1932г. Многие ученые были преисполнены чувством удовлетворения, что им удалось осуществить многовековую мечту научного поиска.

Однако в 1928г. П. Дирак, а в последствии в 1932г. К.Андерсон были обнаружены такие частицы, получившие название позитроны(е +)

Позитрон - это первая элементарная частица, предсказанная теоретически.

В 1932г. Д.Чедвигом был открыт нейтрон с массой = 1838 m е

Нейтрон в свободном состоянии, в отличии от протона, является нестабильным и распадается на протон и электрон с периодом полураспада Т=1,01 10 3 с. В нутрии ядра нейтрон может существовать неопределенно долго.

В 1931-1933гг. В.Паули анализируя -распад предположил, что при распаде, кроме протона и электрона, испускается еще одна нейтральная частица с массой покоя =0. Эту частицу назвали нейтрино ()

Только в 1956г. К.Коуэн с сотрудниками обнаружил антинейтрино(), образующееся в ядерном реакторе. Оно было "поймано" при исследовании реакции: р+ v n+е + , нейтрино вызывает реакцию n+р+е - .

В 1937г. К.Андерсон и С.Неддерман обнаружили заряженные частицы с массой 206,7m е, эти частицы были названы -мезонами( + и -), обладающие зарядом +е и -е. В настоящее время эти частицы называют -частицами или -мюонами.

В 1947г. Английский ученые С.Поуэль, Г.Оккиалини и др. открыли -мезоны (-мезон - первичный мезон, который, распадаясь, дает мюоны)

Мезон имеют заряд +е и -е, а массы 273,2 m е. Несколько позднее 1950 г. Был открыт нейтральный -мезон( о), с массой 264,2 m е. В настоящее время известно три сорта -мезон: - , о, + , они интенсивно взаимодействуют с нуклонами, легко рождаются при столкновении нуклонов с ядрами, т.е. являются ядерно-активными. В настоящее время считается, что -мезоны являются квантами ядерного поля, ответственными за основную часть ядерных сил.

С 1949-1950гг. началось буквально "нашествие" элементарных частиц, их число стремительно возрастало.

Вновь появившиеся частицы можно разделить на две группы:

Первая группа включает в себя частицы с массами около 966 m е и 974 m е, в настоящее время их называют К-мезонами. Известны К + и К - мезоны с массами приблизительно 966,3 m е и электрическими зарядами +е и -е. Известны нейтральные К-мезоны (К о и К о) с массами 974,5 m е.

Вторая группа частиц получила название гиперонов. В настоящее время известны следующие гипероны:

В 1955г. Открыт антипротон, а в 1956г.- антинейтрон.

За последние годы были открыты новые квазичастицы (резонансных состояний) с необычайно малым временем жизнм, порядка 10 -22 - 10 -23 сек.. В этом случае даже не удается зафиксировать следы частиц и об их существовании можно судить лишь из косвенных соображений, из анализа поведения продуктов их распада.

В последние годы открыт второй сорт нейтрино, так называемое нейтрино(антинейтрино) мюонное и , которое испускается например, при распаде -мезонов;

III группа - тяжелые частицы, или барионы

В эту группу входят:

  • Нуклоны и их античастицы
  • Гипероны и их античастицы

Применение термоядерной энергии на примере установки Токамак

Учащимся предлагается ответить на вопросы:

  • Какую ядерную реакцию называют термоядерной?(устно)
  • Как можно осуществить термоядерную реакцию?
  • Объясните принцип действия установки "Токамак".(письменно используя доп. Литературу)
  • Объясните принцип действия лазерной установки для термоядерного синтеза"(письменно используя доп. литературу)

Каптелова Н.В., учитель физики МОУ «Гимназия № 79» г. Барнаула Алтайского края

11 класс

Урок по теме «Элементарные частицы» (2 часа).

Учебный предмет – физика

Уровень – базовый

Профиль класса – гуманитарный

Используемый текст - § 64 «Элементарные частицы» (Мансуров А.Н., Мансуров Н.А., учебник «Физика-10-11» для гуманитарных школ)

Технология «Развитие Критического Мышления через Чтение и Письмо» (РКМЧП)

Тип урока: работа с информационным текстом

Цели:

    дидактическая – через опосредованное изучение текста сформировать у учащихся систему научных знаний об элементарных частицах

    развивающая – выработать у школьников приёмы эффективной переработки учебной информации, продолжить формирование способа самостоятельного обучения, познавательных и коммуникативных компетентностей

    воспитательная – продолжить формирование у учащихся уверенности в своих собственных познавательных возможностях, диалектико-материалистического мировоззрения

    методическая – создать условия для освоение учащимися способа самостоятельного обучения на основе технологии РКМЧП

Ожидаемый результат:

    усвоение учащимися системы научных знаний об элементарных частицах и представление её в виде кластера;

    получение и осмысление каждым учеником собственного опыта самостоятельной познавательной деятельности на основе работы с текстом через индивидуальную, парную, групповую, коллективную формы работы (технология РКМЧП).

Примечание: Кластер - графический способ, позволяющий представить информацию в структурированном и систематизированном виде, выявить ключевые слова темы. Кластер представляет собой графическую схему, состоящую из овалов. В центре кластера, в главном овале – основная проблема, тема, идея. В овалах следующего уровня – классифицирующие признаки или основания для систематизации, в овалах третьего уровня – дальнейшая детализация и т.д. Кластеры могут быть очень разветвлёнными, поэтому всегда нужно выбрать тот уровень детализации, на котором можно остановиться. С помощью кластеров можно в систематизированном виде представить большие объёмы информации.

Кластер содержит ключевые слова, ключевые идеи с указанием логических связей между текстовыми субъектами. Связи придают картине целостность и наглядность.

Кластер (как и все графические схемы) является моделью изучаемой темы, позволяет увидеть тему целиком, «с высоты птичьего полёта». Повышается мотивация, т.к. легче воспринимаются идеи темы. Человеку всегда нужны графические образы. Мозг запоминает модели. Представление информации учащимися в виде кластера способствует её творческой переработке, поэтому обеспечивает усвоение информации на уровне понимания. Кластеры (как и другие схемы) позволяют «пораскачивать» своё мышление, сделать его более гибким, избавиться от стереотипов, догматическое мышление превратить в критическое.

Важно и то, что построение кластеров позволяет выявить систему ключевых слов, которые могут быть использованы для поиска в Интернете, а также для определения основных направлений исследований учащихся, выбора тем учебных проектов.

Домашнее задание (внеклассная работа) :

1. § 65 (самостоятельно по технологии РКМЧП)

2. Кластеры, выполненные с помощью ИКТ

(2 и 3 по желанию)

Сценарий урока.

    Вызов.

Цели этапа:

Побуждение к работе с новой информацией, пробуждение интереса к теме

- вызов «на поверхность» имеющихся знаний по теме

- бесконфликтный обмен мнениями

    «Наводящие вопросы»

    «Кластер»

    1. Оргмомент

2. Учащимся предлагаются вопросы для обдумывания и обсуждения:

Выход на логическую цепочку: природа-тело-вещество-молекула-атом-ядро-нуклоны (протон, нейтрон)-электрон.

    Вспомните, какие элементарные частицы вам известны? Представьте в виде кластера.

(Протон, нейтрон, электрон, фотон, π-мезон)

Ученики работают индивидуально в тетрадях, затем в парах , по их предложениям учитель на доске оформляет кластер. Один из предложенных учениками кластер:

    1. Учитель: Начиная с 1932 года открыто более 400(!) элементарных частиц .

    Может ли такое их количество претендовать на роль «первокирпичиков Вселенной», истинно элементарных частиц?

    1. «Думай самостоятельно/в паре/группе». Коллективное обсуждение ответов. Осмысление и формулировка цели урока . Планирование деятельности. («Изучить элементарные частицы через их классификацию и систематизацию по выделенным характеристикам, результат представить в виде кластера».

      Предлагается самостоятельно изучить текст §64 «Физика-10-11» Мансуров А.Н., Мансуров Н.А), информацию представить в виде кластера.

  1. Осмысление

Цели этапа:

Получение новых знаний

Освоение разных типов чтения: ознакомительного, изучающего, усваивающего, поискового, приёмов осмысления информационного текста

Развитие аналитических, дискуссионных, коммуникативных навыков

    «Система И.Н.С.Е.Р.Т.»

    «Кластер»

    «Думай самостоятельно/в паре/ в группе»

Самостоятельная работа с текстом

    Восприятие информации. На этом этапе ученик работает индивидуально («Думай самостоятельно»). Ознакомительное чтение, получение общего представления по теме текста.

    Изучающее чтение. Индивидуальная работа («Думай самостоятельно»). Операции смыслового восприятия элементов текста, понимание слов, предложений, абзацев, вычленение текстовых субъектов (основных понятий, ключевых слов, идей), выявление связей (логических, причинно-следственных, пространственных, временных и т.д.) текстовых субъектов. Понимание связи содержания данного текста с содержанием других изученных текстов, интерпретация данного текста на основе этой связи. Помогает осмыслить содержание применение маркировки текста И.Н.С.Е.Р.Т.: (I .N .S .E .R .T . - "Interactive Notation System for Enhanced Reading and Thinking ")

    - «известно»

- - «противоречит представлениям»

+ - «интересное и неожиданное»

? - «узнать поподробнее»

! - «важно»

    Усваивающее чтение. Проверка понимания текста. Ученики в парах («Думай в паре») проговаривают своими словами друг другу ответы на вопросы к тексту.

    Переработка информации. Индивидуальная работа («Думай самостоятельно»). Разбиение информации на связанные части. Выделение оснований для систематизации и классификации полученной информации.

    Синтез переработанной информации. Индивидуальная работа («Думай самостоятельно»). Группировка, комбинирование информации, составление кластера. Перевод полученной информации «на другой язык»: с языка слов на язык схем, с вербального языка на графический.

    Представление и защита индивидуальных кластеров в парах («Думай в паре»), затем в группах («Думай вместе»).

«Обратный перевод» информации: с языка схем на язык слов, с графического языка на вербальный, причём информация сообщается своими словами. Обмен идеями в дискуссии или полемике. Аргументация, конструктивная критика, уточнение, совместная доработка кластера.

    Рефлексия

Обдумать смысл пройденного;

Взглянуть на содержание урока в свете собственного жизненного опыта

«Возвращение к кластеру»

«Выходная карта»

    Представление и защита нескольких вариантов групповых кластеров перед классом, коллективное обсуждение.

Предполагаемый вариант итогового кластера:

2. Задание: Сравните данный кластер с кластером, предложенным в начале урока. (!!!)

Найдите место на нём для электрона, протона, нейтрона, фотона, π-мезона.

Сделайте вывод. (Значительное приращение знаний об элементарных частицах!)

3. (Подведение итогов и мотивация на дальнейшую познавательную деятельность). Вернёмся к вопросам, с которых начали урок. Нашли ли на них ответы? Какие вопросы остались без ответа? Какие возникли новые? Где искать ответы?

    Из чего состоит окружающий мир?

    Напоминает ли структура вещества бесконечную череду вложенных друг в друга матрёшек или процесс деления прерывается, когда обнаруживается неделимая элементарная частица?

    Что представляют из себя самые первичные фундаментальные частицы, из которых состоят все остальные?

    Существует ли в природе такой уровень организации материи, глубже которого ничего нет?

    Может ли такое количество (более 400) претендовать на роль «первокирпичиков Вселенной», истинно элементарных частиц?

    Как ориентироваться в таком изобилии элементарных частиц?

    Какие частицы являются истинно «элементарными»?

(Думай самостоятельно/в паре/ группе). Обсуждение.

    Индивидуальная письменная работа (10 мин) «Выходная карта» - 1) самая важная мысль урока; 2) один вопрос по теме урока 3) общий комментарий по материалу урока

    Сделайте самооценку своей работы на уроке (доволен собой, не очень, не доволен, почему?).

IV . Домашнее задание (внеклассная работа)

Дать возможность учащимся вести самостоятельную работу по углублению знаний, полученных во время урока;

Отрабатывать навык самостоятельной учебной деятельности;

Развивать творческие способности школьников

1.Изучить § 65 (самостоятельно по технологии РКМЧП)

2. Кластеры к § 65, выполненные с помощью ИКТ

3. Творческая работа по заинтересовавшей теме.

(2 и 3 по желанию)

Наблюдения за учащимися показывают, что построение кластеров воспринимается ими как творческая работа , где возможна реализация собственного видения проблемы, собственного подхода, вариативности, как средство самореализации, самоутверждения.

Возможность индивидуальной, парной, групповой и коллективной работы создаёт психологический комфорт учебного процесса. Включение каждого ученика в три вида

деятельности (думаю, пишу, проговариваю) обеспечивает «внутреннюю обработку информации». Эти факторы способствуют усвоению учащимися нового материала на уровне понимания, осмысления и развитию у них учебно-познавательной мотивации и активности (особенно у тех школьников, которые плохо вписываются в систему традиционного, иллюстративно-объяснительного обучения). И самое главное - они практически осваивают способ самостоятельного приобретения нового знания , у них формируется функциональная грамотность.

Вышеописанная технология обучения на основе творческой переработки текста позволяет учить интересно, быстро, качественно и даёт учащимся чувство удовлетворения.

Примеры выполнения кластеров по темам « Фундаментальные взаимодействия» и «Фундаментальные частицы»:

Мир элементарных частиц

Урок в 11 классе

Цель урока:

Образовательные:

Познакомить учащихся со структурой элементарных частиц, с особенностями сил и взаимодействия внутри ядра; научить обобщать и анализировать полученные знания, правильно излагать свои мысли; способствовать развитию мышления, умению структурировать информацию; воспитывать эмоционально-ценностные отношения к миру

Развивающие:

Продолжить развитие мышления, умения анализировать, сравнивать, делать логические выводы.

Развивать любознательность, умения применять знания и опыт в различных ситуациях.

Воспитательные:

Развитие навыков интеллектуальной коллективной работы; воспитание основ нравственного самосознания (мысль: ответственность ученого, первооткрывателя за плоды своих открытий);

Пробудить у учащихся интерес к научно – популярной литературе, к изучению предпосылок открытия конкретных явлений.

Цель урока:

Создать условия для развития интеллектуальной и коммуникативной компетентностей, в которых ученик сможет:

Назвать основные виды элементарных частиц;

Осмыслить многозначность современной стандартной модели мира;

Сформулировать свои представления об истории развития элементарных частиц;

Проанализировать роль развития элементарной физики;

Классифицировать элементарные частицы по их составу;

Задуматься о необходимости иметь собственную позицию, толерантно относиться к иной точке зрения;

Проявлять бесконфликтное общение при работе в группе.

Тип урока: изучение нового материала.

Форма урока: комбинированный урок.

Методы урока: словесные, наглядные, практические.

Оборудование: компьютерная презентация, мультимедийный проектор, рабочая тетрадь ученика, персональный компьютер.

Этапы урока

Время, мин.

Методы и приемы

1 .Организационное введение. Постановка учебной проблемы.

Запись темы урока. Рассказ учителя.

2. Актуализация знаний (презентация ученика)

Рассказ учащегося о имеющихся знаниях, предпосылки изучения нового.

3. Изучение нового материала (презентация учителя)

Рассказ учителя с использованием слайдов. Наблюдение. Беседа. Рассказ ученика с использованием слайдов.

4. Отработка изученного материала. Закрепление.

Закрепление по опорному конспекту и

работа с учебником. Ответы на контрольные вопросы.

5. Подведение итогов. Домашнее задание

Выделение главного учителем, учениками.

Ход урока

    Организационный момент урока (приветствие, проверка готовности обучающихся к уроку)

Сегодня на уроке мы с вами рассмотрим различные взгляды на устройство мира, из каких именно частиц состоит всё то, что нас окружает. Урок будет похож на лекцию, и от вас, в основном, требуется внимание.

В начале урока я хочу предложить вашему вниманию историю возникновения учения о частицах.

2. Актуализация знаний.(Презентация Алексахиной В. «История развития знаний о частицах»)

Слайд 2 . Античный атомизм – это представления о строении мира учеными античности. По представлениям Демокрита, атомы были вечными, неизменными, неделимыми, отличающимися по форме и размерам частицами, которые, соединяясь и разъединяясь, образовывали различные тела.

Слайд 3. Благодаря открытию учеными Дираком, Галилеем и Ньютоном принципа относительности, законов динамики, законов сохранения, закона всемирного тяготения, в 17 веке атомистика древних претерпела значительные изменения и в науке утвердилась механическая картина мира , в основе которой лежало гравитационное взаимодействие – ему подвержены все тела и частицы, не зависимо от заряда.

Слайд 4. Знания, накопленные при изучении электрических, магнитных и оптических явлений, привели к необходимости дополнения и развития картины мира. Таким образом, в 19 веке и до начала 20 века стала господствовать электродинамическая картина мира . В ней рассматривалось уже два типа взаимодействия – гравитационное и электромагнитное. Но им не удалось объяснить только тепловое излучение, устойчивость атома, радиоактивность, фотоэффект, линейчатый спектр.

Слайд 5. В начале 20 века появилась идея квантования энергии, которую поддерживали Планк, Эйнштейн, Бор, Столетов, а также корпускулярно-волновой дуализм Луи де Бройля. Эти открытия ознаменовали появление квантово-полевой картины мира , в которой добавилось ещё и сильное взаимодействие. Началось активное развитие физики элементарных частиц.

3. Изучение нового материала

До тридцатых годов 20 века устройство мира представлялось ученым в самом простом виде. Они считали, что «полный набор» частиц, из которых состоит все вещество – это протон, нейтрон и электрон. Поэтому их назвали элементарными. К этим частицам относят и фотон – переносчик электромагнитных взаимодействий.

Слайд 6. Современная стандартная модель мира:

Материя состоит из кварков, лептонов и частиц – переносчиков взаимодействия.

Для всех элементарных частиц есть вероятность обнаружить античастицы.

Корпускулярно-волновой дуализм. Принципы неопределённости и квантования.

Сильные, электромагнитные и слабые взаимодействия описываются теориями великого объединения. Остается необъединенная гравитация.

Слайд 7. Ядро атома состоит из адронов, которые состоят из кварков. Адроны – частицы, участвующие в сильном взаимодействии.

Классификация адронов: Мезоны состоят из одного кварка и одного антикварка Барионы состоят из трёх кварков – нуклонов (протоны и нейтроны) и

гиперонов.

Слайд 8. Ква́рки - фундаментальные частицы, из которых состоят адроны. В настоящее время известно 6 разных сортов (чаще говорят - ароматов) кварков. Кварки удерживает сильное взаимодействие, участвуют в сильных, слабых и электромагнитных. Обмениваются между собой глюонами, частицами с нулевой массой и нулевым зарядом. Для всех кварков существуют антикварки. Они не могут наблюдаться в свободном виде. Имеют дробный электрический заряд: +2/3е – называются U-кварками (верх) и -1/3е – d-кварк (низ).

Кварковый состав электрона - uud, кварковый состав протона - udd

Слайд 9. Частицы, не входящие в состав ядра, – лептоны. Лептоны – фундаментальные частицы, не участвующие в сильном взаимодействии. На сегодня известно 6 лептонов и 6 их античастиц.

У всех частиц есть антицастицы. Лептоны и их античастицы: электрон и позитрон с ними электронное нейтрино и антинейтрино. Мюон и антимюон с ними мюонное нейтрино и антинейтрино. Таон и антитаон - таонное нейтрино и антинейтрино.

Слайд 10. Все взаимодействия в природе являются проявлениями четырех видов фундаментальных взаимодействий между фундаментальными частицами – лептонами и кварками.

Сильному взаимодействию подвержены кварки, а глюоны являются его переносчиками. Оно связывает их вместе, образуя протоны, нейтроны и другие частицы. Косвенно оно влияет на связь протонов в атомных ядрах.

Электромагнитному взаимодействию подвержены заряженные частицы. При этом под воздействием электромагнитных сил сами частицы не изменяются, а лишь приобретают свойство отталкиваться в случае одноименных зарядов.

Слабому взаимодействию подвержены кварки и лептоны. Самый известный эффект слабого взаимодействия – превращение нижнего кварка в верхний, что в свою очередь заставляет нейтрон распасться на протон, электрон и антинейтрино.

Одной из самых существенных разновидностей слабого взаимодействия является взаимодействие Хиггса . Согласно предположениям, поле Хиггса (серый фон) заполняет все пространство жидкость, ограничивая дальность слабых взаимодействий. Также бозон Хиггса взаимодействует с кварками и лептонами, обеспечивая существование их массы.

Гравитационное взаимодействие. Является наиболее слабым из известных. В нем участвуют все без исключения частицы и переносчики всех видов взаимодействия. Осуществляется благодаря обмену гравитонами – единственными, еще не открытыми на опыте частицами. Гравитационное взаимодействие всегда является притяжением.

Слайд 11. Многие физики надеются на то, что подобно тому, как удалось объединить электромагнитное и слабое взаимодействия в электрослабое, со временем удастся построить теорию, объединяющую все известные виды взаимодействий, название которой «Великое объединение».

4 . Закрепление знаний.

Первичное закрепление (Презентация Гордиенко Ж. «Большой адронный коллайдер». Современные ученые стараются усовершенствовать процесс изучения частиц, с целью добиться новых открытий для научно-технического прогресса. Для этого строятся грандиозные исследовательские центры и ускорители. Одним из таких грандиозных строений является Большой адронный коллайдер.

Итоговое закрепление (работа в группах: ответы на вопросы по учебнику)

Вы разделены на две группы: 1 ряд и 2 ряд. У вас есть задание на листиках: вам необходимо ответить на вопросы, а ответы вы найдете в учебнике в параграфе 28 (стр. 196 – 198).

Задания первой группы:

    Сколько всего фундаментальных частиц? (48)

    Кварковый состав электрона? (uud)

    Перечислите два самых сильных взаимодействия (сильное и электромагнитное)

    Полное число глюонов? (8)

Задания второй группы:

    Сколько частиц лежит в основе мироздания? (61)

    Кварковый состав протона? (udd)

    Перечислите два самых слабых взаимодействия (слабое и гравитационное)

    Какие частицы осуществляют электромагнитное взаимодействие? (фотон)

Озвучивание руководителями групп ответов на вопросы и обмен карточками.

    Итог урока.

Вы познакомились с некоторыми аспектами развития современной физики и теперь имеете элементарные представления о том, в каком направлении развивается наша наука и для чего нам это нужно.

6. Домашнее задание. Параграф 28.

Задания первой группы:

1. Сколько всего фундаментальных частиц? ______________

2. Кварковый состав электрона? ____________

3. Перечислите два самых сильных взаимодействия ______

4. Полное число глюонов? _______

___________________________________________________________________

Задания второй группы:

1. Сколько частиц лежит в основе мироздания? ________

2. Кварковый состав протона? ___________

___________________________________________________________________

Задания первой группы:

1. Сколько всего фундаментальных частиц? __________

2. Кварковый состав электрона? __________

3. Перечислите два самых сильных взаимодействия __________________________________________________________________________

4. Полное число глюонов? _________

___________________________________________________________________

Задания второй группы:

1. Сколько частиц лежит в основе мироздания? ____________

2. Кварковый состав протона? _____________

3. Перечислите два самых слабых взаимодействия ______________________

4. Какие частицы осуществляют электромагнитное взаимодействие? ______

___________________________________________________________________

Задания первой группы:

1. Сколько всего фундаментальных частиц? _____________

2. Кварковый состав электрона? ______________

3. Перечислите два самых сильных взаимодействия ________________________________________________________________________

4. Полное число глюонов? _____

___________________________________________________________________

Задания второй группы:

1. Сколько частиц лежит в основе мироздания? ______

2. Кварковый состав протона? _________

3. Перечислите два самых слабых взаимодействия _______________________

4. Какие частицы осуществляют электромагнитное взаимодействие? _______

Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

Элементарные частицы обычно подразделяются на четыре класса . Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

Дадим краткую характеристику четырем классам элементарных частиц.

К одному из них относится только одна частица – фотон .

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

Второй класс образуют лептоны , третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

n , p ,

гипероны

Барионные

резонансы

Мезонные

резонансы

Лептоны (греч. «лептос » – лёгкий) - частицы , участвующие в электромагнитных и слабых взаимодействиях . К ним относятся частицы, не обладающие сильным взаимодействием: электроны (), мюоны (), таоны (), а также электронные нейтрино (), мюонные нейтрино () и тау-нейтрино (). Все лептоны имеют спины, равные 1/2 , и следовательно являются фермионами . Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

Адроны (греч. «адрос » – крупный, массивный) - частицы , участвующие в сильных , электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны .

Барионы - адроны , состоящие из трёх кварков (qqq ) и имеющие барионное число B = 1.

Класс барионов объединяет в себе нуклоны (p , n ) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов (). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен 1/2 , так что барионы являются фермионами . За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда .

Мезоны - адроны , состоящие из кварка и антикварка () и имеющие барионное число B = 0.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат -мезоны или пионы (), K-мезоны, или каоны (), и -мезоны. Массы и мезонов одинакова и равна 273,1 , 264,1 время жизни, соответственно, и с. Масса К-мезонов составляет 970 . Время жизни К-мезонов имеет величину порядка с. Масса эта-мезонов 1074 , время жизни порядка с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами .

Калибровочные бозоны - частицы , осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W + , W – , Z 0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

Масса частицы , m . Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z -бозон). Z -бозон - наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

Время жизни , τ. В зависимости от времени жизни частицы делятся на стабильные частицы , имеющие относительно большое время жизни, и нестабильные .

К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π 0 -мезон, имеющий время жизни τ = 0.8×10 - 16 с.

К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами . Характерное время жизни резонансов - 10 - 23 -10 - 24 с.

Спин J . Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином - Бозе–Эйнштейна.

Электрический заряд q . Электрический заряд является целой кратной величиной от е = 1,6×10 - 19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

Внутренняя четность Р . Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

Квантовые числа : барионное число В , странность s , очарование (charm ) с , красота (bottomness или beauty ) b , верхний (topness ) t , изотопический спин I приписывают только сильновзаимодействующим частицам - адронам .

Лептонные числа L e , L μ , L τ . Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e , μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны ν e , n μ и n τ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения L e , L μ , L τ = 0, +1, -1. Например, e - , электронное нейтрино n e имеют L e = +l; , имеют L e = - l. Все адроны имеют .

Барионное число В . Барионное число имеет значение В = 0, +1, -1. Барионы, например, n , р , Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

Странность s . Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K + - , K – - мезоны имеют s = + l.

Charm с . Квантовое число с с = 0, +1 и -1. Например, барион Λ + имеет с = +1.

Bottomness b . Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В + -мезон имеет b = +1.

Topness t . Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

Изоспин I . Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) - изотопические мультиплеты . Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ + , Σ - , Σ 0 , входят в состав изотопического триплета I = 1, Λ - изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет , 2I + 1.

G - четность - это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G- четность сохраняется только в сильных взаимодействиях.



error: Контент защищен !!